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A Continuous Sensitivity Equation (CSE) method is presented for shape parameters in tur-
bulent wall-bounded flows modeled with the standard k–� turbulence model with wall
functions. Differentiation of boundary conditions and their complex dependencies on
shape parameters, including the two-velocity scale wall functions, is presented in details
along with the appropriate methodology required for the CSE method. To ensure accuracy,
grid convergence and to reduce computational time, an adaptive finite-element method
driven by asymptotically exact error estimations is used. The adaptive process is controlled
by error estimates on both flow and sensitivity solutions. Firstly, the proposed approach is
applied on a problem with a closed-form solution, derived using the Method of the Man-
ufactured Solution to perform Code Verification. Results from adaptive grid refinement
studies show Verification of flow and sensitivity solvers, error estimators and the adaptive
strategy. Secondly, we consider turbulent flows around a square cross-section cylinder in
proximity of a solid wall. We examine the quality of the numerical solutions by performing
Solution Verification and Validation. Then, Sensitivity Analysis of these turbulent flows is
performed to investigate the ability of the method to deal with non-trivial geometrical
changes. Sensitivity information is used to estimate uncertainties in the flow solution
caused by uncertainties in the shape parameter and to perform fast evaluation of flows
on nearby configurations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Sensitivity Analysis (SA) has been the topic of active research for many years because of its numerous industrial applica-
tions. In design optimization, it refers to the gradient of the cost functions with respect to design variables which can be effi-
ciently obtained through adjoint methods. In a more general framework, sensitivities are the derivatives of the dependent
variables with respect to any (physical or numerical) parameter. They are more general in the sense that the derivatives
of cost functions can be deduced from the sensitivities of dependent variables; the reciprocal being false. We refer to them
as flow sensitivities. The body of work on SA has shown that it provides improved insights into the physic of complex prob-
lems and allows for a better understanding of them.

Irrespective of the approach employed, computing sensitivities is more involved for parameters that influence the prob-
lem through the modification of its geometry. They are referred to as shape parameters as opposed to value parameters. In-
deed, a number of difficulties arises when considering shape parameters both from the theoretical and the practical side that
will be discussed in what follows.
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There are several approaches for computing sensitivities: (1) Finite Differences (FD); (2) Complex Variable Method
(CVM); and (3) Sensitivity Equation Methods (SEM). The first option requires only evaluations of dependent variables and
computes their derivatives by finite differences. This simple approach requires minimal additional development. However,
it is costly because the problem at hand must be solved at least as many times as there are parameters. Furthermore, numer-
ical evaluations of sensitivities of pointwise quantities is often difficult because of technical problems arising from non-
matching meshes. However, the main disadvantage of this approach is that the calculation of derivatives may suffer from
subtractive cancellation errors leading to large errors in the evaluations if the parameter perturbations are too small. This
approach is often used as a verification tool for the other methodologies (see e.g. [1–3]).

The CVM is similar to the FD idea with the exception that a complex perturbation is taken. The key improvement is that
computed derivatives are not affected by round-off errors [4]. However, the CVM does not offer a saving of resources when
compared to using FD [5] since the problem must be solved at a perturbed state for each parameter. Furthermore, the re-
quired memory for the solver essentially doubles due to the use of complex declarations of floating point variables (the
CPU time of the original solver is also increased by a significant factor).

The last option is provided by the SEM which corresponds to numerically solving a set of equations for the sensitivities.
These equations are obtained by differentiation of the (discrete or continuous) equations for the dependent variables. Since
they are always linear, the SEM always compute a sensitivity for a fraction of the cost of computing the flow making these
methodologies very attractive. In the Continuous Sensitivity Equation (CSE) approach, the governing equations are first dif-
ferentiated and then discretized, whereas in the Discrete Sensitivity Equation (DSE) approach, discretization is performed
prior to differentiation. The advantages of each methodology and their differences have been extensively discussed in the
literature (see e.g. [6,7]). One of the main advantages of the DSE approach is that it can be handled through Automatic Dif-
ferentiation (AD). It is a powerful approach because the code for calculating sensitivities is almost automatically generated
from the code for computing dependent variables. Yet, in many cases, implementation requires user interventions to ensure
efficiency of the resulting sensitivity code both in terms of accuracy and CPU time. See [8–10] for more details on AD and on
the most common softwares. One of the main advantage of the CSE method is that it avoids the differentiation of non-dif-
ferentiable terms arising from discretization schemes such as limiters, blending functions or stabilization terms (since dif-
ferentiation is performed on the continuous flow equations). Furthermore, the continuous approach offers more flexibility at
the discretization stage. Here, we present a CSE approach.

When a shape parameter a is considered, independent variables (say x) depend on a. Dependent variables (say u) always
depend both on x and a : uðx; aÞ. Hence, for a shape parameter, one can consider either the Eulerian sensitivity @u=@a (partial
derivative of u with respect to a) or the Lagrangian sensitivity Du=Da (total derivative of u with respect to a). The major dif-
ficulty in using Lagrangian sensitivities is the requirement to define and manage the domain deformation induced by the
boundary displacement when the parameter changes (the definition being non-unique). Eulerian sensitivities avoid this del-
icate issue but special attention must be paid when deriving and evaluating boundary conditions. It is worth noting that the
DSE methods presented in the literature all use Lagrangian sensitivities which lead to the need for evaluating mesh sensi-
tivities. This requires the delicate issue of differentiating the mesh generation code or mesh deformation procedure which
is both involved and computationally demanding. To circumvent these difficulties, we propose the use of the Eulerian sen-
sitivities and present a suitable methodology for handling boundary conditions for the corresponding Sensitivity Equations
in turbulent flow problems. Moreover, this approach simplifies the use of adaptive grid methods which have proved to be
extremely powerful for achieving mesh independent solutions of complex problems [11,12].

In Computational Fluid Mechanics (CFD), there is a wealth of publication on SEM for laminar flows (see e.g. Refs. [13,6,14–
18,3]). However, the situation is quite different for the case of turbulent flows for which there is a paucity of literature. The
additional equations for turbulence modeling greatly increase the level of complexity of the system of PDE and its discret-
ization. The DSE approach has been applied to turbulent flows and value parameters using AD in Refs. [19,20] and to shape
parameters using hand-differentiation in Refs. [21,22]. The CSE method for turbulent flows and value parameters is pre-
sented in Refs. [23–25]. To the authors’ knowledge, this work is the first attempt to derive a CSE method for turbulent flows
and shape parameters.

To this end, wall-bounded turbulent flows are modeled with the RANS equations and the standard k–� turbulence model
with wall functions using two velocity scales. The CSE are obtained by direct differentiation of this set of PDE and their asso-
ciated boundary conditions. There are two major challenges when treating shape parameters. The first difficulty arises from
the differentiation of wall functions which is not straightforward due to their complex shape parameter dependencies. For
example, the boundary condition for the flow in the tangential direction is prescribed as a function of the tangential velocity
(mixed or Robin boundary condition). Secondly, it leads to a difficult requirement: the accurate evaluation of the first and
second-order derivatives of the velocity at the boundary. Duvigneau and Pelletier [26] have recently proposed a constrained
Taylor-series least-squares procedure to achieve accurate boundary gradients for laminar flows. For this work, we extend the
constrained Taylor-series least-squares procedure to wall-bounded turbulent flows (see Section 5.4).

The accurate evaluation of flow and shape sensitivity solutions of wall bounded turbulent problems is a tedious task. In-
deed, the flow exhibits features whose strength and location are difficult to capture. They are also hard to predict a priori so
that a good mesh is difficult to design ab initio. This difficulty is compounded when sensitivity variables are added because
their features are less intuitive than that of the flow variables. Furthermore, the transpiration terms in their boundary con-
ditions result in very thin regions where sensitivity variables exhibit sharp variations. And, when considering several design
parameters, each sensitivity has its own region of rapid variations. Hence, their successful computation requires appropriate
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numerics. Here, we combine numerical techniques and state-of-the-art computational practices to yield and demonstrate a
powerful approach to compute flow and shape sensitivity in turbulent regime.

On the numerical side we use higher-order stabilized finite-element discretization with an adaptive remeshing procedure
to provide grid resolution for all flow and sensitivity variables. This is achieved by using asymptotically exact error estimates
for all flow and sensitivity unknowns to drive the adaption process. Hence, computational meshes have grid size distribu-
tions adapted to capture all rapid variations in flow and sensitivity variables.

To demonstrate the reliability of the numerical techniques as well as the accuracy of their predictions, the methodology is
used within a rigorous framework for Verification and Validation. Roache [27] gives an excellent overview of the subject
which is comprised of three essential steps: (1) Code Verification, (2) Solution Verification, (3) Validation. There are all per-
formed here for the wall-bounded turbulent flow and sensitivity problem at hand. The Method of Manufactured Solution
(MMS) is used for Code Verification of the flow and sensitivity solvers, the error estimators for the flow and sensitivities
and the adaptive remeshing modules in a single grid refinement study. To our knowledge, this is the first reported Verifica-
tion by the MMS of sensitivity solver for wall-bounded turbulent flows. Mesh adaptation also automates much of the Ver-
ification process thus relieving the analyst of the tedious tasks of generating the complex meshes required by the grid
refinement study. Results indicate that highly refined meshes are required to ensure grid independence of the finite-element
predictions. In the case of shape parameters in turbulent flows up to 600,000 grid points, adaptively located, are needed to
achieve mesh independence.

The paper is organized as follows. First, the flow equations are presented in Section 2 and their associated boundary con-
ditions in Section 3. Section 4 presents the Continuous Sensitivity Equations. In Section 5, we detail the shape sensitivity
boundary conditions and the proper methodology required for parameter dependent boundaries. Section 6 introduces the
stabilized finite-element formulation, the error estimation technique and the adaptive remeshing procedure. The proposed
approach is first verified in Section 7 (Code Verification) on a problem with a closed-form solution derived using the Method
of the Manufactured Solution [28,29]. As will be shown, the closed-form solution allows for the simultaneous Verification of
the flow and sensitivity solver, the adaptive procedure and the error estimators and any post-processing. In Section 8, the
method is applied to turbulent flows around a square obstacle in proximity of a solid wall. We first perform Solution Ver-
ification and Validation to assess the accuracy of the numerical predictions. Then, sensitivities are used to predict changes
in the flow response arising from non-trivial geometrical changes. In particular, we use sensitivity information to (1) esti-
mate uncertainties in the flow solution caused by uncertainties in the shape parameters and (2) to perform fast evaluation
of flows on nearby configurations.

2. Governing equations

The flows of interest are described by the steady Reynolds-Averaged Navier–Stokes (RANS) equations on a domain X. The
momentum and mass conservation laws are written as:
qu � ru ¼ �rpþr � sðuÞ þ f ð1Þ
r � u ¼ 0 ð2Þ
where q is the density, u the velocity, p the pressure and f the volumetric forces. The viscous stress tensor is defined accord-
ing to Newton’s law and the Reynolds stress from the first order turbulence model approximation. Denoting by l the molec-
ular dynamic viscosity and lt the dynamic eddy-viscosity, the resulting shear stress tensor s in Eq. (1) is:
sðuÞ ¼ ðlþ ltÞ½ruþ ðruÞT �
The system is closed by evaluating the turbulent viscosity using the k–� model by:
lt ¼ qCl
k2

�
ð3Þ
To preserve positivity of the dependent variables, we work with the logarithmic form of these equations [30]. This can be
viewed as using the following change of dependent variables:
K ¼ lnðkÞ and E ¼ lnð�Þ ð4Þ
The transport equations for the logarithmic variables are:
qu � rK ¼ r � lþ lt

rk

� �
rK

� �
þ lþ lt

rk

� �
rK � rKlte

�KP � q2Cl
eK

lt
þ qK ð5Þ

qu � rE ¼ r � lþ lt

r�

� �
rE

� �
þ lþ lt

r�

� �
rE � rE þ qC1CleK�EP � C2qeE�K þ qE ð6Þ
In which the production of turbulence P is defined as:
P ¼ ru : ½ruþ ðruÞT �



Table 1
Constant of the turbulence model.

rk r� C�1 C�2 Cl

1.0 1.3 1.44 1.92 0.09
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The constants appearing in these equations are set to the standard values proposed by Launder and Spalding [31] and are
given in Table 1. Note that Eqs. (5) and (6) are equivalent to the original equations of the turbulence model; only the com-
putational variables are different. Hence, the turbulence model remains unchanged. The eddy-viscosity expressed with the
logarithmic variables is:
lt ¼ qCle2K�E ð7Þ
Finally, the volumetric forces f in Eq. (1) and the source terms qK and qE in Eqs. (5) and (6) are used for Code Verification
purposes in the framework of the Method of the Manufactured Solution in Section 7. For real flow problems, as the one con-
sidered in Section 8, they are set to zero.

3. Flow boundary conditions

This section focuses on the boundary conditions associated with the governing equations that apply on the boundary C of
the domain X. While fairly standard, we provide details on the boundary conditions because they will prove necessary in
developing the boundary conditions for the sensitivity problem.

3.1. Classical Dirichlet and Neumann boundary conditions

Boundaries of X that are not walls are subjected to standard Dirichlet and Neumann boundary conditions that are im-
posed on boundaries CD and CN respectively. For instance:

� Dirichlet boundary conditions:
u ¼ u; K ¼ lnðbkÞ; E ¼ lnðb�Þ ð8Þ
� Neumann boundary conditions:
½�pI þ sðuÞ� � n̂ ¼ t; lþ lt

rk

� �
rK

� �
� n̂ ¼ 0; lþ lt

r�

� �
rE

� �
� n̂ ¼ 0 ð9Þ
where n̂ is an outward unit normal vector at the boundary, I the second-order identity tensor, bk and b� small constants and t
the imposed surface traction.

3.2. Wall boundary conditions

The standard k–� turbulence model is not valid when the turbulent Reynolds number is low, as it is the case in near-wall
regions. Wall functions are used to describe the solution in these areas. The computational boundary is set at a distance d
from the physical wall boundary. The gap between these two boundaries is the region where the flow is represented by
the wall functions instead of being solved. In the remainder, the computational wall boundary will be referred to as the wall
and quantities evaluated at it will be identified with the subscript w. We use the two-velocity scale wall functions described
by Chabard [32] and Ignat et al. [33] and presented in what follows.

A wall function expresses the value of uþ, the non-dimensional velocity parallel to the solid wall, as a function of yþ, the
non-dimensional normal distance from the physical wall:
uþ ¼ 1
j

lnðEyþÞ for yþ > 10:8 ð10Þ
where j is the Karman constant and E a roughness parameter (for smooth walls: j ¼ 0:42 and E ¼ 9:0). The variables uþ and
yþ are defined as follows:
yþ ¼ qduk

l
and uþ ¼ ut

u��
ð11Þ
where ut ¼ u � t̂ denotes the tangential velocity, d is the normal distance to the physical wall and u�� ¼
ffiffiffiffiffiffiffiffiffiffiffi
sw=q

p
the friction

velocity. The specific value of d where the wall function is applied is chosen so that yþ lies within the range of validity of
the wall function (i.e. 30 < yþ < 300) [34]. A velocity scale based on the turbulence kinetic energy is computed by (see
Ref. [32] for details):
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uk ¼ C
1
4
lk

1
2
w ¼ C

1
4
l exp

Kw

2

� �
ð12Þ
The boundary conditions associated to the governing equations are:

� flow boundary condition in the normal direction: The normal velocity is set to zero.
u � n̂ ¼ 0 ð13Þ
� flow boundary condition in the tangential direction: In the tangential direction the wall functions lead to a mixed bound-
ary condition relating the tangential velocity to the wall shear stress. The two-velocity scale wall functions result in a lin-
ear relationship between the shear stress along the boundary sw and the tangential velocity ut:
½ðs � n̂Þ � t̂�wall ¼ sw ¼ quku�� ¼
quk

1
j ln E qduk

l

� �ut ð14Þ
� boundary condition for K: The K-equation is solved with a zero auxiliary flux boundary condition. This condition arises
from the fact that the wall shear stress is considered constant in the wall functions region (i.e. 0 < yþ < 300) [34]. This
Neumann condition is required to compute the distribution of uk along the wall.
lþ lt

rk

� �
rK � n̂ ¼ 0 ð15Þ
� boundary condition for E: The boundary condition for the logarithm of � is the logarithm of the usual Dirichlet boundary
condition for the turbulence kinetic energy dissipation rate at walls but the velocity scaled uk is used instead of u��.
E ¼ ln
u3

k

jd

� �
ð16Þ
4. Continuous Sensitivity Equations

The Continuous Sensitivity Equations (CSE) are derived formally by direct differentiation of the flow equations (Eqs. (1)
and (2)) and the turbulence variables equations (Eqs. (5) and (6)) with respect to an arbitrary parameter a. Thus, we treat any
variable u as a function of both space and parameter a. This dependency is denoted by u ¼ uðx; aÞ. The sensitivities are de-
fined as the partial (Eulerian) derivatives:
su ¼
@u
@a

; sp ¼
@p
@a

; sK ¼
@K
@a

; sE ¼
@E
@a

ð17Þ
Then, CSE governing these sensitivity fields are written as:
q0u � ruþ qðsu � ruþ u � rsuÞ ¼ �rsp þr � sðsuÞ þ r � s0ðuÞ þ fs ð18Þ
r � su ¼ 0 ð19Þ
q0u � rK þ qðsu � rK þ u � rsKÞ

¼ r � l0 þ l0t
rk
� ltr0k

r2
k

� �
rKþ lþ lt

rk

� �
rsK

� �
þ l0 þ l0t

rk
� ltr0k

r2
k

� �
rK � rK

þ 2 lþ lt

rk

� �
rK � rsK þ e�K l0tP þ ltP

0 � ltPsK
	 


� qeE�K 2
q0

q
þ

C 0l
Cl
þ sK �

l0t
lt

 !
þ qs

K ð20Þ

q0u � rE þ qðsu � rE þ u � rsEÞ

¼ r � l0 þ l0t
r�
� ltr0�

r2
�

� �
rE þ lþ lt

r�

� �
rsE

� �
þ l0 þ l0t

r�
� ltr0�

r2
�

� �
rE � rE þ 2 lþ lt

r�

� �
rE � rsE

þ qC�1CleK�EP
q0

q
þ C 0�1

C�1
þ

C 0l
Cl
þ sK � sE þ

P0

P

 !
� C�2qeE�K

C 0�2
C�2
þ q0

q
þ sE � sK

� �
þ qs

E ð21Þ
the fluid property derivatives being denoted by a ð0Þ and account for all explicit and implicit dependencies; and:
s0ðuÞ ¼ ðl0 þ l0tÞ½ruþ ðruÞT �
sðsuÞ ¼ ðlþ ltÞ½rsu þ ðrsuÞT �
P0 ¼ 2rsu : ½ruþ ðruÞT �
where the sensitivity of the eddy-viscosity is given by:
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l0t ¼ lt
q0

q
þ

C 0l
Cl
þ 2sK � sE

 !
ð22Þ
fs
; qs
K and qs

E are the sensitivity of the volumetric forces and source terms in Eqs. (1), (5) and (6) respectively. Finally, the sen-
sitivities of the turbulence variables and those of their logarithms are related through:
sK ¼
sk

k
; sE ¼

s�
�

ð23Þ
5. Shape sensitivity boundary conditions

To complete the description of the sensitivity problem, the boundary conditions presented in Section 3 are differentiated
in the same way. However, if a is a shape parameter, the position of a boundary point is parameter dependent. As their name
indicates, boundary conditions are only defined on the boundary of the domain and arise from physical considerations dur-
ing the mathematical modeling of the problem. Furthermore, since the position of boundary points changes with a, the dif-
ferentiation must therefore be performed while following the boundaries through their deformations. In other words, the
total (or Lagrangian) derivative must be used. Thus, the differentiation should account for the fact that both the boundary
location and the boundary condition depends on a.

Consequently, the parameter dependent boundaries must be properly parameterized. Some geometrical issues linked to
shape parameters are first addressed in the next subsection before presenting the differentiation of the flow boundary con-
ditions. For a complete mathematical analysis of problems related to the evolution of domains, the interested readers is re-
ferred to Refs. [35,36].

5.1. Describing parameter dependent boundaries

For a shape parameter, the position of points on the boundary C of the computational domain depends on the parameter
of interest a. The boundary segment C is parameterized by n, the curvilinear coordinate of a point on C (the arc length is often
used). With this definition, the parameter a controls the shape of C while n determines the location of a point on C. Therefore,
any point bX of the boundary segment depends both on a and n:
CðaÞ ¼ fbXðn; aÞjn 2 ½n0; n1�g ð24Þ
For a parameterization of this form, the unit normal and tangent vectors n̂ðn; aÞ and t̂ðn; aÞ are usually expressed in terms of
the derivatives of bX with respect to n. Any change to a will affect all these geometrical quantities. If one follows a given point
on C; n remains constant as a varies to change the shape of C as illustrated in Fig. 1. Thus, the total derivatives simplify to:
DbX
Da
ðn; aÞ ¼ @

bX
@a
ðn; aÞ

Dn̂
Da
ðn; aÞ ¼ @n̂

@a
ðn; aÞ

Dt̂
Da
ðn; aÞ ¼ @t̂

@a
ðn; aÞ
where D=Da denotes the total derivative with respect to a.
Fig. 1. Notations relative to boundary surface.
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Now let / be any solution variable or physical property and �/ its imposed value (in the case of a Dirichlet boundary con-
dition: /ðbX; aÞ ¼ �/ðbX; aÞ) on a parameter dependent boundary segment. The total derivative of this constraint is:
D/
Da
¼ D�/

Da
where D�/=Da is analytically known from the user-defined flow Dirichlet boundary condition. Using the chain rule, the total
derivative of /ðbXðn; aÞ; aÞ can be expressed as:
D/
Da
ðbXðn; aÞ; aÞ ¼ @/

@a
þr/ � @

bX
@a
From this, the boundary condition for the (Eulerian) sensitivity of / is obtained as the difference of D�/=Da (which is analyt-
ically known) and a transpiration term accounting for the modification of the shape of the boundary:
@/
@a
¼ D�/

Da
�r/ � @

bX
@a

ð25Þ� �

In general, the transpiration conditions involve the geometric sensitivities @bX

@a ;
@n̂
@a and @t̂

@a on the boundary curves. Note

that, since we specify the parameterization of the boundary shape, these derivatives are well defined and easily computed.

5.2. Classical Dirichlet and Neumann boundary conditions

We first present the derivation of the classical Dirichlet and Neumann boundary conditions (Eqs. (8) and (9)). Sensitivity
boundary conditions are obtained from relation (25) expressing the relationship between the total derivative and the sen-
sitivity @/

@a. Doing so, the following boundary conditions are obtained.

� Dirichlet boundary condition on CD:
su ¼
D�u
Da
�ru � @

bX
@a

sK ¼
b0k
bk
�rK � @

bX
@a

sE ¼
b0�
b�
�rE � @

bX
@a

ð26Þ
� Neumann boundary condition on CN:
½�spIþ s0ðuÞ þ sðsuÞ� � n̂ ¼
D�t
Da
� ½�pIþ sðuÞ� � @n̂

@a
� r½�pIþ sðuÞ� � @

bX
@a

" #
� n̂

l0 þ l0t
rk
� ltr0k

r2
k

� �
rKþ lþ lt

rk

� �
rsK

� �
� n̂

¼ � rl � @
bX
@a
þ
rlt � @

bX
@a

rk

24 35rK � n̂� lþ lt

rk

� �
rK � @n̂

@a
þrðrKÞ � @

bX
@a
� n̂

" #

l0 þ l0t
r�
� ltr0�

r2
�

� �
rE þ lþ lt

r�

� �
rsE

� �
� n̂ ¼ � rl � @

bX
@a
þ
rlt � @

bX
@a

r�

24 35rE � n̂� lþ lt

r�

� �
rE � @n̂

@a
þrðrEÞ � @

bX
@a
� n̂

" #
ð27Þ
5.3. Wall function boundary conditions for sensitivities

The differentiation of the wall boundary conditions presented in Section 3 leads to the following boundary conditions for
CSE.

� flow sensitivity boundary condition in the tangential direction:
@s
@a
� n̂

� �
� t̂

� �
w

¼ q0 þ rq � @
bX
@a

 !
uku�� þ quk

Du��
Da
þ qu��

Duk

Da
� s � @n̂

@a
� t̂� s � n̂ � @t̂

@a
� rs � @

bX
@a

 !
� n̂

" #
� t̂ ð28Þ
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with the total derivatives of the velocity scales given by:
Duk

Da
¼ uk

C0l
4Cl
þ 1

2kw
sk þrk � @

bX
@a

 !" #
¼ uk

C0l
4Cl
þ 1

2
sK þrK �

@ bX
@a

 !" #
ð29Þ

Du��
Da
¼ j

ln Eqduk
l

� � j0ut

j
þ su þru � @

bX
@a

 !
� t̂þ u � @t̂

@a
� ut

ln Eqduk
l

� � E0

E
þ d0

d
þ 1

uk

Duk

Da

�8<:
þ

q0 þ rq � @bX
@a

� �
q

�
l0 þ rl � @bX

@a

� �
l

3775
9>>=>>; ð30Þ
Note that (28) is a mixed boundary condition since @s
@a � n̂
	 


� t̂ is related to su � t̂ through Du��
Da .

� flow sensitivity boundary condition in the normal direction:
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� boundary condition for sK:
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� boundary condition for sE:
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5.4. Computing boundary flow gradients for the sensitivity boundary conditions

As can be seen, for shape parameters, first derivatives of the flow and turbulence variables are needed to evaluate Dirich-
let boundary conditions and second derivatives are required for evaluating Neumann or Robin boundary conditions. Unfor-
tunately, this introduces numerical difficulties since only approximate boundary gradients are available from the flow solver.
Accurate spatial gradients can be obtained in the interior of the computational domain with an a posteriori gradient projec-
tion technique (which is already used for error estimation). However, this technique does not yield accurate derivatives on
boundaries.

A methodology to produce accurate boundary flow gradients was recently proposed by Duvigneau and Pelletier [26]. It
consists in a least-squares reconstruction, using Taylor-series as basis functions, that is constrained to satisfy the flow
boundary conditions through the method of Lagrange multipliers. It has been shown that one must use at least 3rd order Tay-
lor-series defined over patches of four layers of neighboring elements to achieve sufficient accuracy for the Dirichlet sensi-
tivity boundary conditions and Taylor-series expansion of degree 6 on a 8-layer patch when Neumann conditions are
imposed (see Ref. [26] for details). For this work, we have extended the constrained Taylor-series least-squares procedure
to wall-bounded turbulent flows. This essentially involves two steps. First, the reconstruction procedure is also applied to
the turbulence variables in the standard k–� turbulence model. Second, the Taylor-series least-squares procedure is modified
to enforce constraints ensuring that the reconstructed solution fields satisfy the wall function boundary conditions as re-
quired to yield consistent boundary flow gradients. Thus, the higher-order reconstructed solution variables satisfy the
boundary conditions.

In Sections 7 and 8, boundary conditions for the sensitivity problems are computed using a 6th order Taylor-series least-
squares reconstruction of flow variables on 8-layered patches. It will be shown that it ensures a sufficiently accurate eval-
uation of transpiration terms in the sensitivity boundary conditions.
6. Finite-element formulation and adaptive remeshing

The RANS equations and the logarithmic form of the turbulence equations are solved by a finite-element method. The
velocity and the logarithmic turbulence variables are discretized using 6-nodded quadratic elements. Fluid pressure is dis-
cretized by piecewise linear continuous functions (Taylor-Hood element). For high Reynolds number, the equations are dom-
inated by convection and the standard Galerkin discretization may lead to non-physical oscillations and convergence
difficulties. Hence, some form of upwinding is required. This is done by using the Streamline Upwind/Petrov–Galerkin
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(SUPG) stabilized formulation initially proposed by Brooks and Hughes [37] and further improved by Ilinca et al. [38]. The
discretization of the flow equations leads to a system of non-linear algebraic equations which are linearized by Newton’s
method. All linear algebraic systems are solved using a sparse direct solver.

Because the Sensitivity Equations correspond to the linearization of the flow equations (alike the Jacobian in the Newton–
Raphson method for the non-linear RANS equations), they are comprised of similar terms (convection, diffusion, etc). Hence,
the same numerical techniques can be used to solve both the original and sensitivity problems so that no additional numer-
ical technique is necessary. Furthermore, it eases the extension of an existing flow code to solve also the sensitivity equa-
tions. There is no particular difficulty in solving the sensitivity equations. In terms of computational cost, the sensitivity
solutions are computed for a fraction of the cost of the flow since only one linear system needs to be solved. Moreover,
the sensitivity problem is not subjected to convergence issues as it may be the case for the set of RANS equations. It should
also be noted that for shape parameters, the sensitivity problems for two different parameters only differ from their bound-
ary conditions. As a consequence, the matrix of the linear systems is the same for all parameters and the difference between
linear systems is restricted to their right-hand sides. Thus, when using a direct solver, the LU decomposition has only to be
performed once for the first parameter. Computing the sensitivity for any additional parameter only requires to build the
system right-hand side and to perform the backward substitution. Hence, their is almost no CPU time overhead in computing
shape sensitivities for several parameters. This makes our Eulerian approach to shape sensitivity very attractive compared to
the more classical Lagrangian approaches (for which they are additional source terms in the equations that depends on the
parameter so that matrices for two different parameters are not the same).

The accuracy of the finite-element approximation is directly related to the local mesh size (see Refs. [39,11]). An adaptive
remeshing procedure is employed to improve the accuracy by refining the mesh in regions of high error in the flow and sen-
sitivity variables. Regions targeted for refinement are identified by the so-called Zhu–Zienkiewicz (ZZ) error estimator
[40,41] which evaluates estimates in elemental error norms. The ZZ error estimator belongs to the family of post-processing
techniques (or least-squares-based recovery techniques) [27,42]. Although simple, recovery-based estimators perform sur-
prisingly well in practice if a proper norm of the error is used [43,42,44].

Error estimates are obtained by a local least-squares reconstruction of the solution derivatives for the velocity and pres-
sure fields and the logarithms of turbulence variables. Note that, an error estimate for the eddy-viscosity is also constructed
since slowly varying fields of K and E may result in rapid variation of lt .

Once error estimates are obtained for all dependent variables (flow and sensitivities), an optimal mesh size distribution is
determined for each variable using the asymptotic convergence rate of the finite-element method and the principle of equi-
distribution of the error so that each element has the same contribution to the norm of the total error [11]. The minimum
element size predicted for all flow and sensitivity variables is selected to generate a new mesh by an advancing front meth-
od. This is performed in an iterative fashion, beginning with a coarse mesh and producing a sequence of meshes which re-
duce the error by a constant factor over that of the previous mesh. Note that refining on both the flow and its sensitivities is
of crucial importance in the present context. Indeed, the flow variables and their sensitivities do not generally exhibit the
same locations of rapid variations (and each sensitivity with respect to a given parameter has its own region of rapid vari-
ations). Consequently, the region of high errors on a given mesh are generally not the same for each flow variable and each
sensitivity variable. Thus, to compute accurate solutions for all variables, we calculate and drive the adaptive process with as
many error estimators as there are dependent variables involved in the problem at hand. The minimum element size pre-
dicted by all the dependent variables is selected on a given element. The computational domain is then re-meshed using
an advancing front technique. Details of this adaptive remeshing procedure may be found in the literature [39,11,24,44].
7. Verification by the Method of the Manufactured Solution

We first assess the proposed numerical methodology and its implementation in this section. To that end, we used the
Method of the Manufactured Solution (MMS) as proposed by Roache [27,28] to perform Code Verification. As will be shown,
the closed-form solution enables the simultaneous Verification of the flow and sensitivity solvers, the adaptive procedure,
the error estimators and any post-processing procedure. To our knowledge, this is the first reported Verification by the
MMS of sensitivity solver for wall-bounded turbulent flows. This first step is mandatory to establish the correctness and reli-
ability of the numerical techniques developed especially given the complexity of the problem at hand. Furthermore, compar-
isons with experiments as the ones presented in Section 8 would be totally irrelevant without performing first Code and
Solution Verification as reported in the literature [27,45].

7.1. Definition of the Manufactured Solution

The Manufactured Solution (MS) mimics the near-wall behavior of a two-dimensional, steady incompressible turbulent
boundary-layer. The Reynolds number Re defined by Re ¼ U1L

m , where U1 is the reference velocity, L the reference length and m
the kinematic viscosity, is set to one million. This Manufactured Solution has been used for the 2nd Workshop on CFD Uncer-
tainty Analysis [45] to perform Code Verification and to assess the accuracy of some error estimators. The Manufactured
Solution and the source terms defining the modified problem are thoroughly described in Refs. [46,47]. These manufactured
source terms are incorporated in f, qK and qE in Eqs. (1), (5) and (6) respectively. The mass conservation equation (2) is left
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unchanged since the manufactured velocity field is solenoidal. Additional source terms are required for Verification of wall
functions as detailed in Ref. [48].

In the present study, we extend the Manufactured Solution to perform Verification of shape sensitivity problems with
wall functions. We focus on sensitivity of the flow response with respect to the vertical position of the flat wall along which
the turbulent boundary-layer develops. The problem is illustrated in Fig. 2 where y0 is the shape parameter of interest. The
manufactured sensitivity fields are obtained by explicit differentiation of the manufactured flow solution with respect to y0.
From these sensitivity fields, the source terms for the modified sensitivity problem are derived according to the Method of
the Manufactured Solution and incorporated in fs

; qs
K and qs

E in Eqs. (18), (20) and (21) respectively.
For completeness, we briefly describe the manufactured flow and sensitivity fields. As illustrated in Fig. 2, the physical

domain is a square of side 0:5L with 0:5L 6 x 6 L and 0 6 y� y0 6 0:5L. All quantities presented below are non-dimensional
using L and U1 as the reference length and velocity scale. In the definition of the velocity components and pressure coeffi-
cient, we use the following similarity variables with r ¼ 4: and rm ¼ 2:5r:
g ¼ rðy� y0Þ
x

; gm ¼
rmðy� y0Þ

x
ð34Þ
The streamwise velocity component, u and the normal velocity component, v, are given by:
u ¼ erfðgÞ ð35Þ

v ¼ 1
r
ffiffiffiffi
p
p ð1� e�g2 Þ ð36Þ
and the pressure is taken to be:
p ¼ 0:5 lnð2x� x2 þ 0:25Þ lnð4y3 � 3y2 þ 1:25Þ ð37Þ
The manufactured field of k and � are generated using the following equations:
k ¼ kmaxg2
me1�g2

m þ ak ð38Þ

� ¼ 0:36
k2

max

mmax
e�g2

m þ a� ð39Þ
with kmax ¼ 0:01 and mmax ¼ 0:001. Finally, the eddy-viscosity is obtained from Eq. (3). Note that in Eqs. (38) and (39), we
have added small constants ak and a� to the manufactured fields for k and � compared to what is described in Ref. [46]. This
has been done to avoid logarithms of zero values since the computational variables for the turbulence model are the loga-
rithms of k and �. These constants have been chosen so as to have a negligible effect on the Manufactured Solution as ex-
plained in Ref. [44].
ak ¼ 10�5; a� ¼ 10�3 ð40Þ
The analytical solution for all variables is imposed on the inflow and upper boundaries as Dirichlet boundary conditions. On
the outlet, the normal and tangential forces on the boundary are imposed from the exact velocity and pressure fields. The
diffusion fluxes of k and � are also imposed from the exact solution. Hence, on the outlet Neumann boundary conditions
are applied on all variables. On the computational wall (bottom) boundary, the type of boundary conditions is determined
by the wall functions (see Section 3.2):
y + 0.50

y0

0.5 1.0

y

x
0

0

physical domain modeled

Fig. 2. Manufactured problem: computational domain.
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� u: Robin boundary condition
� v: Dirichlet boundary condition
� k: Neumann boundary condition
� �: Dirichlet boundary condition

As described in Ref. [48], source terms are added in the classical wall function boundary conditions for compatibility with the
Manufactured Solution. The computational boundary is set at a distance d ¼ 0:006 from the true wall located at y ¼ y0. This
ensures, for a Reynolds number of one million, that the non-dimensional wall distance in viscous unit, yþ, (see Eq. (11)) lies
in [30,300] on all the wall while being as close as possible of the lower limit.

Direct differentiation of the Manufactured Solution with respect to y0 yields the following expressions for the sensitivities
of the flow and turbulent variables:
Su ¼ �
2r

x
ffiffiffiffi
p
p e�g2

Sv ¼ �
2g

x
ffiffiffiffi
p
p e�g2

Sp ¼
3ðy� yoÞ½1� 2ðy� yoÞ�

4ðy� yoÞ3 � 3ðy� yoÞ2 þ 1:25
logð2x� x2 þ 0:25Þ

Sk ¼
2kmaxrm

x
gmðg2

m � 1Þeð1�g2
m Þ

S� ¼
0:72k2

maxrm

xmmax
gme�g2

m

The boundary conditions for the sensitivity problem are deduced from the flow boundary conditions described above (see
Section 5.3 for more details).

7.2. Verification of flow and sensitivity solutions

The flow and sensitivity fields are solved using the adaptive finite-element method presented in Section 6. All flow and
sensitivity variables contribute to the error estimation so that the mesh adaptation process is driven by 10 error estimators
(velocity, pressure, k; � and lt and their corresponding sensitivities). Eight grid adaptation cycles have been performed. Fig. 3
shows the final mesh containing 123,689 nodes. It is typical of adapted meshes for boundary-layer flow problems. As ex-
pected, extensive refinement is observed in the near-wall region. Several bands of refinement can also be identified which
correspond to regions of rapid variation in velocity, K; E and lt and their sensitivities.

Fig. 4 presents the trajectories of semi-norms of the true and estimated error for the flow variables and their sensitivities.
The semi-norms are defined as follows:
Fig. 3. Manufactured Solution: final adapted mesh.
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Fig. 4. Manufactured Solution: trajectories of true and estimated error norms.
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H1U : keuk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

X
ðreu � reu þrev � revÞ dX

s

H1P : kepk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

X
rep � rep dX

s

H1M : kelt
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
X
relt

� relt
dX

s

with eu ¼ ½eu; ev �T ¼ ½u� uh;v � vh�T ; ep ¼ p� ph and elt

¼ lt � lth where the subscript h referred to discrete finite-element
solutions. The true error is computed using the exact manufactured fields and the estimated error is obtained from the ZZ
error estimator as described in Section 6.

As can be seen in Fig. 4, errors on both the flow and the sensitivity decrease from cycle to cycle indicating the correct
implementation of both the numerical discretization and the adaptive strategy. Moreover, the trajectory of the error esti-
mates almost converges to that of the true errors with mesh adaption. Indeed, the efficiency indexes of the ZZ error estima-
tors are close to one (actually between 0.85 and 1.05) as reported in [44]. This property implies that the error estimators
become more accurate and reliable with mesh refinement which in turns allows for appropriate mesh adaptation. Further-
more, it is worth noting that the observed orders of convergence for all dependent variables are in the range of what was
theoretically expected (see [44] for details).

We now turn our attention to the evaluation the friction resistance Rf on the wall boundary (Cw) and its sensitivity since
such quantities are the most demanding to predict accurately. Furthermore, it will allow for the verification of the post-pro-
cessing procedure at hand. Taking qU2

ref Lref as a reference force, the friction resistance is computed as follows:
Rf ¼
1

qU2
ref Lref

Z
Cw

s � n̂ � t̂ dC ¼
Z

Cw

ðlþ ltÞ
@u
@y
þ @v
@x

� �� �
dC
The last integral is a simplified expression for our particular case using n̂ ¼ ½0;1�T ; t̂ ¼ ½1;0�T .
Explicit differentiation of the above expression yields the sensitivity of the friction coefficient which is an Eulerian (par-

tial) derivative with respect to the parameter y0. For this problem, the geometric sensitivities are:
@n̂
@y0
¼ @t̂
@y0
¼ ½0; 0�T ;

@ bX
@y0
¼ ½0;1�T ð41Þ
which leads to the following simplified expression for the Eulerian sensitivity of the friction resistance:

@Rf

@y0
¼
Z

Cw

ðlþ ltÞ
@Su

@y
þ @Sv

@x

� �
þ l0t

@u
@y
þ @v
@x

� �� �
dC ð42Þ
The Lagrangian (total) sensitivity is easily derived using the total derivative with respect to the parameter y0. In our partic-
ular case, the expression can be simplified to:
DRf

Dy0
¼ 1

qU2
ref L ref

Z
Cw

Ds
Dy0
� n̂ � t̂ dC ¼ 1

qU2
ref L ref

Z
Cw

@s
@y0
þrs � @

bX
@y0

 !
� n̂ � t̂ dC

¼ @Rf

@y0
þ 1

qU2
ref Lref

Z
Cw

rs � @
bX

@y0
� n̂ � t̂ dC ¼ @Rf

@y0
þ 1

qU2
ref Lref

Z
Cw

ðlþ ltÞ
@2u
@y2 þ

@2v
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 !
þ l0t
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� �" #
dC ð43Þ
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As can be seen, the Lagrangian sensitivity DRf

Dy0
is equal to the Eulerian sensitivity @Rf

@y0
plus a transpiration term (last integral

term of the third and fourth lines) which accounts for the change in the position of the wall boundary caused by changes
in the parameter y0. Since the wall boundary condition does not depend on y0, its Lagrangian derivative is zero. This is con-
firmed by Table 2 which gives the exact analytical value of the friction coefficient and its sensitivities. This means that the
transpiration term (last term of the fourth line in Eq. (43)) exactly cancels out the Eulerian sensitivity given by Eq. (42). This
can easily be seen since @�

@y ¼ � @�
@y0

.

Fig. 5 shows the evolution of the true errors in Rf and its sensitivities with adaptive cycles. As can be seen, the errors de-
crease from cycle to cycle. Hence, the errors on the sensitivity of boundary integral forces can be reduced as much as desired
using the adaptive process. Indeed, the prediction of the friction coefficient on the first coarse mesh is marred with a relative
true error greater than 150% and 600% for its Eulerian sensitivity. These relative errors are reduced to less than 0.004% and
0.03% on the last adapted mesh.

We take advantage of the MS to illustrate how sensitivity information can be used for the evaluation of solution on nearby
geometries and to assess the accuracy of this procedure. We use first order Taylor-series expansions of the flow response in
parameter space to approximate the flow for which the flat plate is located at y0 þ dy0 using only information at the baseline
state (for which the flat plate is located at y0):
Table 2
Manufa

Exact fr

Rf ¼ 0:3
/ðx; y0 þ dy0Þ � /ðx; y0Þ þ dy0
@/
@y0
ðx; y0Þ
We consider a change of dy0 ¼ 0:02 in the shape parameter from its baseline value of zero and we compare the baseline flow,
the first order extrapolation from y0 ¼ 0 to y0 þ dy0 ¼ 0:02 and the recomputed flow at y0 ¼ 0:02 (reanalysis with the flow
solver). Fig. 6 shows the transverse distributions of the horizontal velocity component u, the normal velocity component v
and the pressure p at the outlet ðx ¼ 1Þ. The baseline and extrapolated solutions are available on the baseline domain i.e.
y 2 ½0:006;0:5� while the recomputed solution is available on the perturbed domain i.e. y 2 ½0:026;0:52� corresponding to
the shaded area in Fig. 6. Note that the extrapolated solution for y 2 ½0:006;0:026� has no direct physical meaning.

As can be seen, the agreement between reanalysis and extrapolation results is almost perfect. This first shows that the
numerical evaluation of the flow sensitivities is accurate. Second, it tells us that the change in the shape parameter is suf-
ficiently small to ensure that the linear Taylor-series in parameter space is a reliable approximation of the flow variable
dependence on y0, in spite of the apparently complicated relationships given by Eqs. (35)–(39).

8. Application to turbulent flow around a square obstacle

8.1. Definition of the problem

We consider the flow of air around a cylinder of square cross-section in the proximity of a solid wall as investigated by
Wu and Martinuzzi using Laser Doppler Velocimetry [49]. The experimental configuration consists of a smooth flat plate
ctured Solution: friction resistance.
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Fig. 5. Trajectories of the true errors in Rf and its sensitivities.
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located in the 0:45 m� 0:45 m test section of a suction-type wind tunnel. Details of the experimental set-up are shown in
Fig. 7. Experiments were conducted for a Reynolds number of 22,000 based on D, the dimension of the side of the square
obstacle, and U0, the inlet velocity. The oncoming free stream turbulence intensity is set at 1% and the mean flow is steady.

In the remainder of the article, all quantities presented are non-dimensionalized with D and U0 as the reference length
and velocity scale.

8.2. Computational domain and Sensitivity Analysis

The computational domain and boundary conditions are shown in Fig. 8. In the experiment, an end-plate flap was ad-
justed to maintain parallel flow below the plate. However, it is generally assumed that the flow above the plate is not influ-
enced by the flow under the plate. Hence, only the portion of the tunnel located above the plate is included in the
computational model. Also it was deemed unnecessary to simulate the effect of the end-plate flap.

Wall functions provide boundary conditions along the solid surfaces of the domain: upper wall of the tunnel, the sides of
the obstacle, and the plate. As was shown in a previous study [50], it is necessary to include the thickness of the real plate in
the computational model in order to reproduce the physically observed stagnation point at the leading edge of the plate. The
half-thickness of the plate model is therefore set to 0.083. With this model geometry, the production of k, which depends on
the velocity gradients, is triggered a short distance upstream of the leading edge of the plate so that realistic levels of tur-
bulence are reproduced in this region. The leading edge of the plate, as well as the corners of the cylinder, are rounded to
avoid corner singularities with wall functions.

The inlet value of k is set to achieve an inflow with a turbulence intensity of 1%. Based on previous experience [50], the
inlet value of � is adjusted so that the inlet eddy-viscosity is equal to ten times the molecular viscosity.
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First, in Section 8.3, we proceed with Verification and Validation of our simulation results. In Section 8.4, verified sensi-
tivity predictions are used to assess the effect of reducing the gap S between the obstacle and the flat plate. The baseline
value of S ¼ S0 ¼ 0:25 combines with perturbations that reduce the value of S guarantee that all configurations will remain
in the steady state flow regime observed experimentally [49]. Perturbations in the parameter S only affect the geometry of
the obstacle. Hence, geometric sensitivities are zero on all boundaries except that of the obstacle where:
@n̂
@S
¼ @t̂
@S
¼ ½0; 0�T ;

@ bX
@S
¼ ½0;�1�T ð44Þ
8.3. Numerical results: Solution Verification and Validation

Mesh independent flow and sensitivity solutions are obtained by the adaptive remeshing procedure. Solutions are con-
sidered mesh independent when no major changes occur with further mesh refinement. The final mesh, after 8 adaptive
remeshings, has 556, 567 nodes. Figs. 9 and 10 show the 6th mesh generated by the adaptive process with approximately
220,000 nodes (the 8th mesh being too fine to be of any visual interest once displayed in a figure). Recall that the mesh
is adapted to both the flow and sensitivity variables. However, several regions of high refinement can be easily related with
Fig. 9. Mesh after 6 cycles of adaption.

Fig. 10. Mesh after 6 cycles of adaption near obstacle.
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some flow features: the rapid variation of the solution close to the leading edge of the plate, the upper and lower edges of the
boundary-layers developing on the flat plate and upper wall, the shear layer emanating from the corners of the obstacle, etc.

We now turn our attention to assess whether a grid converged solution has been achieved (Solution Verification).
Fig. 11(a) shows the convergence of the distribution of the non-dimensional distance to the wall, as defined by Eq. (11), along
the flat plate with adaptive cycles. As can be seen, mesh independent boundary conditions are achieved and all values of yþ

satisfy the condition 30 < yþ < 300. This is indeed important to ensure a proper modeling of the flow with wall functions.
Although not illustrated here, similar observations hold for the distributions of yþ along all wall boundaries. Fig. 11(b) shows
the convergence of the drag and lift coefficients with the number of nodes. As can be seen, grid converged coefficients are
quickly reached.

Fig. 12(a) and (b) shows the distribution of the skin friction along the plate and that of its sensitivity with adaptive cycles.
Once again, grid converged distributions are achieved by the adaptive procedure. As can be seen, the grid converged distri-
bution of cf presents a first peak near the leading edge of the plate ðx ¼ �15Þ and a second one in the vicinity of the obstacle
due to the fluid being squeezed in the channel under the obstacle. The magnitude of the sensitivity seen in Fig. 12(b) indi-
cates that any change in the value of S will have a significant effect on the skin friction near the obstacle. The nearly zero
value upstream of the square indicates the changes in S have no impact on cf in this region. However, this plot shows that
a reduction of the gap size results in sharp increases of the skin friction near the obstacle. The negative values of sensitivity
downstream the obstacle indicates a reduction of the skin friction in this area. These results indicate that the adaptive pro-
cedure has produced verified flow predictions in the sense of Roache [27].

We now compare numerical flow predictions to available experimental data of Wu and Martinuzzi (Validation). In what
follows, all predicted solutions have been verified as grid converged. For clarity and brevity we do not include plots showing
grid independence for all flow quantities. Since Code and Solution Verification have been performed first, we can state that
the observed discrepancies between the numerical solution and the experimental data are due to the limitations of the tur-
bulence modeling (modeling error). Transverse profiles downstream of the cylinder at x ¼ 1 of the mean velocity compo-
nents, u and v, and of the streamwise and shear components of the Reynolds stress, �u0u0 and �u0v 0 are presented in Figs.
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13 and 14. The best prediction are obtained for u though the strength of the wall jet caused by the flow in the gap under the
cylinder is slightly under-predicted. For the other quantities, the numerical results capture the major trends observed in the
measurements but with some significant discrepancies in magnitude indicating that the turbulence model cannot reproduce
completely the flow physics.

8.4. Numerical results: Sensitivity Analysis

Fig. 15 presents streamlines for the flow velocity (computed from u ¼ ½u;v �T ) and for its sensitivity (obtained from the
velocity sensitivity su ¼ ½su; sv �T ). The flow streamlines in Fig. 15(a) clearly show the fluid flowing upwards on the vertical
face of the obstacle, turning smoothly around the corner and being entrained at a positive angle by the main flow. In
Fig. 15(b), the transpiration terms in the boundary conditions for the sensitivity problem with respect to shape parameters
is clearly visible. For example, some sensitivity streamlines intersect the boundary. Recall that the Sensitivity Equations were
solved for a reduction of the gap size, that is when the obstacle is being lowered, and that we consider Eulerian sensitivity.
According to the flow sensitivity streamlines in Fig. 15(b), lowering the block will have the following consequences on the
flow:

(1) The fluid that is just ahead of the obstacle will flow more easily with the main flow when the obstacle is lowered.
Velocity streamlines will point diagonally upwards from left to right as it is predicted by the streamlines of the sen-
sitivity of the velocity.

(2) The sensitivity streamlines pointing downwards to and intersecting the rounded edge indicate the following: the
space is freed by lowering the block so that the upper part of the flow on the front face will turn right to head down-
stream at a lower height than that of the baseline configuration. Thus the fluid flowing around the top corner no longer
has to take such a long detour and the velocity vector will be at a shallower angle with respect to the horizontal. Sen-
sitivity streamlines reflect this by pointing downwards.
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(3) Lowering the obstacle will allow fluid that was attached to the top of the obstacle to be entrained by the main flow.
Sensitivity streamlines emanating from the boundary simply tell us that the flow velocity streamlines will be pointing
diagonally upwards since space will be freed to make room for the flow.

Note also that the velocity sensitivity vector is tangent to the vertical walls of the square cylinder (see Fig. 15(b)). This was
expected from theoretical considerations. The idea behind that is similar to the finding of Ilinca and Pelletier [3] who first
demonstrated that when a homogeneous Dirichlet boundary condition applies on a boundary for the flow velocity (u ¼ 0,
i.e. no slip wall), the normal component of the velocity sensitivity is zero at the boundary ðsu � n̂ ¼ 0Þ. Here, we use wall func-
tions to model the flow in the viscous sub-layers of solid walls so that this result does not apply. However, by choosing the
unit vector triad ðt̂; n̂; ezÞ positively oriented (right-handed) and using the flow incompressibility condition Eq. (2), the flow
sensitivity boundary condition in the normal direction Eq. (31) at computational walls can be rewritten as:
su � n̂ ¼ � ðru � t̂Þ � @
bX
@a

" #
� ez � u � @n̂

@a
ð45Þ
where � is the right-handed vector cross product. Here, given the sensitivities of geometric quantities for the shape param-
eter at hand (see Eq. (44)), the right-hand side reduces to the derivative of the streamwise component of the velocity in the
tangential direction which is zero on vertical walls according to the flow boundary condition in the normal direction at com-
putational walls.

8.5. Numerical results: Uncertainty Analysis

We now perform Uncertainty Analysis on input data using sensitivity information. We derive error bars on the friction
coefficient along the flat plate due to uncertainties on the gap size value from:
dcf ¼ 	
@cf

@S
jdSj
Fig. 16 shows the friction coefficient distribution with error bars corresponding to 1%, 3%, 5% and 7% of relative uncertainties
on the gap size. As can be seen, the uncertainty on cf is negligible for 1% in comparison to experimental uncertainties. How-
ever, it becomes noticeable for gap size uncertainties larger than 3%. For 7%, the uncertainty on the friction coefficient
reaches values up to 10% of the nominal prediction in the area around the square cylinder.

Finally, we use a first-order Taylor-series expansion in S to provide fast and inexpensive estimates (as compared to full-
blown flow reanalysis) of the velocity and Reynolds stress profiles in the case of a 10% reduction in the gap size. The extrap-
olated profiles are compared to those obtained by a full simulation (reanalysis) at the perturbed value of the gap size. For
example, we compare the extrapolated profile obtained from the first-order expansion of the streamwise velocity compo-
nent u:
uðy; S0 þ dSÞ � uðy; S0Þ þ dS
@u
@S
ðy; S0Þ ð46Þ
with the true profile extracted from a simulation at S ¼ S0 þ dS. Figs. 17 and 18 show the results of this extrapolation for
streamwise and transverse velocity components u and v as well as for the Reynolds stress components �u0u0;�u0v 0 and
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Note that more complex parameter dependency of the flow response or extrapolation further in the parameter space may
require second-order sensitivity (see Ref. [51]).
9. Conclusions

A general Sensitivity Equation Method was presented for the k–� model of turbulence with wall functions. It covers both
value and shape parameters. For the latter, a proper description of geometric quantities is required since boundaries are
parameter dependent. However, the main challenge encountered is the proper derivation and evaluation of the boundary
conditions for the Eulerian sensitivity. In particular, the differentiation of the wall functions for the flow to obtain wall func-
tions for the Sensitivity Equations is a tedious task. Furthermore, it reveals that one must evaluate first and second deriva-
tives of the solution fields at the computational boundary. This was done through a constrained Taylor-series least-squares
procedure to yield accurate spatial flow derivatives in the sensitivity boundary conditions.

An adaptive finite-element method driven by a posteriori estimates of the error on all variables was used to produce accu-
rate and grid independent flow and sensitivity solutions.

Code Verification was performed using a Manufactured Solution, including wall functions, mimicking a turbulent bound-
ary-layer on a flat plate presented in [46] and extended here to address the shape parameter sensitivity problem. Results
from a grid adaptive refinement study indicate that flow and sensitivity solvers, error estimators and the adaptive strategy
are verified in the sense of Roache [27].

The methodology was applied to turbulent flows past a square obstacle in ground proximity and partly immersed in the
boundary-layer. Solution Verification and Validation were first performed to establish the accuracy of the numerical predic-
tions. Then, sensitivity study of the effect of gap size on the flow was carried out. The grid converged solutions of the CSE
reproduces the expected and computed trends of the flow response when the gap size is reduced. Sensitivity informations
were used to estimate uncertainties of the flow response caused by uncertainties in the shape parameter. Finally, it was
shown that sensitivity-based first order extrapolation in the parameter space yields accurate (and inexpensive) estimates
of flows on nearby geometries.
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